postmixprob computes the mixture probabilities (piklj.bar), which define the marginal posterior distribution of the wavelet coefficients of the BHMSMA model, using Newton Cotes algorithm for each subject based on multi-subject or single subject analyses, and returns the same (see References).

postmixprob(n, grid, waveletcoefmat, hyperparam, analysis)

Arguments

n

Number of subjects.

grid

The number of voxels in one row (or, one column) of the brain slice of interest. Must be a power of 2. The total number of voxels is grid^2. The maximum value of grid for this package is 512.

waveletcoefmat

A matrix of dimension (n,grid^2-1), containing for each subject the wavelet coefficients of all levels stacked together (by the increasing order of resolution level).

hyperparam

A vector containing the estimates of the six hyperparameters.

analysis

"MSA" or "SSA", depending on whether performing multi-subject analysis or single subject analysis.

Value

A list containing the following.

pkljbar

A matrix of dimension (n,grid^2-1), containing the piklj bar values.

References

Sanyal, Nilotpal, and Ferreira, Marco A.R. (2012). Bayesian hierarchical multi-subject multiscale analysis of functional MRI data. Neuroimage, 63, 3, 1519-1531.

Author

Nilotpal Sanyal, Marco Ferreira

Maintainer: Nilotpal Sanyal <nilotpal.sanyal@gmail.com>

Examples

set.seed(1)
n <- 3
grid <- 8
waveletcoefmat <- matrix(nrow=n,ncol=grid^2-1)
for(i in 1:n) waveletcoefmat[i,] <- rnorm(grid^2-1)
hyperparam <- rep(.1,6)
analysis <- "multi"
pkljbar <- postmixprob(n,grid,waveletcoefmat,hyperparam,
  analysis)
#> Error in pklj_bar(grid, n, waveletcoefmat, C0, C1, C2, C3, C4, C5): object '_BHMSMAfMRI_pklj_bar' not found
dim(pkljbar$pkljbar)
#> Error in eval(expr, envir, enclos): object 'pkljbar' not found
#[1]  3 63